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Abstract

In this paper, three-dimensional Green's functions for anisotropic bimaterials are studied based on Stroh
formalism and two-dimensional Fourier transforms. Although the Green's functions can be expressed exactly in the
Fourier transform domain, it is di�cult to obtain the explicit expressions of the Green's functions in the physical

domain due to the general anisotropy of the material and a geometry plane involved. Utilizing Fourier inverse
transform in the polar coordinate and combining with Mindlin's superposition method, the physical-domain
bimaterial Green's functions are derived as a sum of a full-space Green's function and a complementary part. While

the full-space Green's function is in an explicit form, the complementary part is expressed in terms of simple regular
line-integrals over [0, 2p� that are suitable for standard numerical integration. Furthermore, the present bimaterial
Green's functions can be reduced to the special cases such as half-space, surface, interfacial, and full-space Green's

functions. Numerical examples are given for both half-space and bimaterial cases with isotropic, transversely
isotropic, and anisotropic material properties to verify the applicability of the technique. For the half-space case
with isotropic or transversely isotropic material properties, the Green's function solutions are in excellent agreement
with the existing analytical solutions. For anisotropic half-space and bimaterial cases, numerical results show the

strong dependence of the Green's functions on the material properties. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The study of fundamental three-dimensional Green's functions within the context of theory of linear
elasticity has been of great interest since the last century. Kelvin (1848) ®rst solved the Green's function
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of a point force applied in a full-space isotropic solid. Boussinesq (1885) derived a surface Green's
function for a force normal to the free surface in isotropic solids. Mindlin (1936) obtained the half-space
Green's function by superposing a complementary part of the solution to the Kelvin's full-space
function.

For generally anisotropic solids, Fredholm (1900), Lifshitz and Rozenzweig (1947), Synge (1957), and
Mura (1987) have investigated line-integral representations of three-dimensional Green's function in a
full-space medium. Recently, explicit expressions for the anisotropic Green's functions were derived by
Ting and Lee (1997) in terms of the Stroh eigenvalues (Stroh, 1958, 1962), and by Tonon et al. (1999)
based on a formulation of Wang (1997). For the special case of transversely isotropic materials, exact
closed-form solutions of the Green's function can be obtained (e.g., Lifshitz and Rozenzweig, 1947;
Willis, 1965; Pan and Chou, 1976). The Green's functions of a point force applied in a bimaterial
isotropic solid were solved by Rongved (1955) and Dundurs and Hetenyi (1965) with recent work along
this line by Fares and Li (1988), Yu and Sanday (1991), Walpole (1996), and Guzina and Pak (1999). It
is noted that the general image method presented by Fares and Li (1988) can also be applied to
construct the Green's functions in multilayered media (Fares, 1987). The Green's functions in
transversely isotropic half-spaces and bimaterials have been developed by Pan and Chou (1979a),
(1979b), Yue (1995) and Yu et al. (1995). Actually, by introducing the hexagonal stress vectors, Yu et
al. (1995) derived the analytical solutions of the elastic ®elds due to various defects. Very recently, Liao
and co-workers (Liao and Wang, 1998; Wang and Liao, 1999) derived closed-form solutions of the
displacements and stresses in a transversely isotropic half-space subjected to various types of loading
and applied their results to the analysis of rock mechanics problems. Also, worth mentioning is the
work by Gosling and Willis (1994) who derived a line-integral expression for the stresses due to an
arbitrary dislocation in an isotropic half-space. For the Green's functions in either an anisotropic half-
space or anisotropic bimaterials, a very limited e�ort has been conducted since Barnett and Lothe (1975)
published their classic work. They derived a line-integral expression of the surface Green's function (the
displacements on a half-space due to a point force on the free surface) based on Stroh formalism
(Barnett and Lothe, 1975). Recently, Walker (1993) derived a Fourier integral expression of the Green's
function for an anisotropic half-space, and Qu and Xue (1998) studied the interface crack problems in
anisotropic bimaterials using the Stroh formalism. The Stroh formalism in the Radon transformed
domain was proposed and applied by Wu (1998) to the three-dimensional anisotropic elasticity where
the Green's displacements in an anisotropic half-space due to a point force were obtained in terms of a
®nite line integral. Also utilizing the Stroh formalism, Ting (1996) derived the anisotropic Green's
functions of a point force in a half-space and bimaterials in the Fourier transformed domain, and Yuan
and Yang (1999) the transformed-domain Green's functions for multilayered generally anisotropic
solids. Although the Green's functions in the physical domain can be calculated through numerical
means such as Fast Fourier Transform, the accuracy of the solutions remain doubtful due to the in®nite
numerical integral and the singular kernels involved.

In this paper, three-dimensional Green's functions of point forces in anisotropic bimaterials by using
the Stroh formalism and two-dimensional Fourier transforms are studied. First, the Green's functions in
the Fourier transformed domain derived by Ting (1996) and Yuan and Yang (1999) are brie¯y reviewed
and are extended to include the in-plane stress components. Some features related to the transformed-
domain Green's functions are also discussed. Secondly, inverse transform in terms of a polar coordinate
transform is introduced so that the integral with respect to the radial direction can be performed
analytically. Thus, in the physical domain, the Green's functions can be represented in terms of a line-
integral. In order to treat the singularities involved, the bimaterial Green's functions are expressed as a
sum of a full-space Green's function and a complementary part. This approach is similar to Mindlin's
superposition method (Mindlin, 1936) and is particularly bene®cial when dealing with anisotropic
bimaterial Green's functions. As will be observed below that in doing so, the singularities involved
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appear only in the full-space Green's function and they can be easily evaluated using its explicit form
(Ting and Lee, 1997; Tonon et al., 1999). In addition, the complementary part of the physical-domain
Green's functions is expressed in such a way that their derivatives with respect to either the source or
®eld point can be carried out exactly under the regular line-integral. The radial dependence of the
complementary part of the Green's functions on the ®eld and source points also resembles those of the
corresponding full-space Green's functions. The present bimaterial Green's functions can be reduced to
the special cases such as half-space, surface, interfacial, and full-space Green's functions. Furthermore,
the present surface Green's displacements can be reduced to the same expression obtained by Barnett
and Lothe (1975) or recently by Wu (1998).

Numerical examples are given for both half-space and bimaterial cases with isotropic, transversely
isotropic, and anisotropic material properties. For the half-space case with isotropic or transversely
isotropic material properties, the current Green's function solutions provide excellent agreement with the
existing analytical solutions. For the anisotropic case, the Green's functions in a half-space or in
bimaterials show clearly the e�ect of material anisotropy on the displacement and stress distributions.

2. Problem description

Consider an anisotropic bimaterial full-space where x3 > 0 and x3 < 0 are occupied by materials 1
and 2, respectively (Fig. 1), with the interface being at x3 � 0 plane. Without loss of generality, we
assume that a concentrated force f � �f1, f2, f3� is applied at (0, 0, d ) in material 1 with d > 0. The
problem domain may be arti®cially divided into three regions: x3 > d (in material 1), 0 R x3 < d (in
material 1), and x3< 0 (in material 2).

In these regions, the equations of equilibrium in terms of displacements uk in the absence of body
forces are written as

Cijkluk, lj � 0 �1�
where Cijkl is the elastic sti�ness tensor of the corresponding region.

The boundary conditions at the interface x3 � 0 require that the displacement and traction vectors
are continuous, i.e.,

u1jx 3�0� � u2jx 3�0ÿ , t1jx 3�0� � t2jx 3�0ÿ �2�

Fig. 1. An anisotropic bimaterial full-space subjected to a concentrated force f applied at (0, 0, d ) in material 1.
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where t1 and t2 are, respectively, the traction vectors on x3 = constant plane with components de®ned
as

t � �sss13, sss23, sss33 � �3�
At the plane x3 � d where the point force is applied, the displacement and traction vectors satisfy the
following conditions

u1jx 3�d ÿ � u1jx 3�d �

t1jx 3�d ÿ ÿ t1jx 3�d � � d�x1 �d�x2�f �4�
Apart from these conditions, the solutions in the region of x3 > d in material 1, and in the region of
x3 < 0 in material 2 are required to be bounded as x3 approaches +1 and ÿ1, respectively.

3. General solutions in the transformed domain

To solve the problem described in the previous section, the two-dimensional Fourier transforms

~uk�y1, y2, x3 � �
� �

uk�x1, x2, x3�eiy�x dx1 dx2 �5�

are applied. In Eq. (5), y � �y1, y2� is the transform vector; x denotes �x1, x2�, and
y � x � y1x1 � y2x2

In the transformed domain, Eq. (1) becomes

Ciakb � yayb ~uk � i�Ciak3 � Ci3ka �ya ~uk, 3 ÿ Ci3k3 ~uk ,33 � 0 �6�
where a, b � 1, 2: Now, letting

y � Zn, n �
24 n1
n2
0

35 �
24 cos y

sin y
0

35, m �
24 0
0
1

35 �7�

a general solution of Eq. (6) can then be expressed as

Äu�y1, y2, x3 � � a eÿipZx 3 �8�
with p and a satisfying the following eigenrelation:h

Q� p
ÿ
R� RT

�
� p2T

i
a � 0 �9�

where

Qik � Cijksnjns, Rik � Cijksnjms, Tik � Cijksmjms �10�
In Eq. (9), the superscript T denotes the transpose. It has been shown (Eshelby et al., 1953; Ting, 1996)
that the eigenvalues of Eq. (9) are either complex or purely imaginary by the positive strain energy
density requirement. It is also noted that Eq. (9) is the Stroh eigenrelation for the oblique plane spanned
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by n and m de®ned in Eq. (7). The traction vector t on the x3 = constant plane and the in-plane stress
vector s are related to the displacements as

t � �sss13, sss23, sss33 � �
ÿ
C13kluk, l, C23kluk, l, C33kluk, l

� �11�

s � �sss11, sss12, sss22� �
ÿ
C11kluk, l, C12kluk, l, C22kluk, l

� �12�

Using the displacement solution (8), the transformed traction and in-plane stress vectors can be found as

Ät � ÿiZb eÿipZx 3 �13�

Äs � ÿiZc eÿipZx 3 �14�
with

b �
ÿ
RT � pT

�
a � ÿ1

p
�Q� pR�a

c � Da �15�
where the matrix D is de®ned by

D �
24C111ana � pC1113 C112ana � pC1123 C113ana � pC1133

C121ana � pC1213 C122ana � pC1223 C123ana � pC1233

C221ana � pC2213 C222ana � pC2223 C223ana � pC2233

35 �16�

If pj, aj, and bj ( j = 1, 2, . . . ,6) are the eigenvalues and the associated eigenvectors, we let

Im pj > 0, pj�3 � �pj, aj�3 � Åaj, bj�3 � Åbj, cj�3 � Åcj, �j � 1, 2, 3�

A � �a1, a2, a3 � B � �b1, b2;, b3

�
, C � �c1, c2, c3 � �17�

where `Im' stands for the imaginary part and the overbar denotes the complex conjugate.
Assuming that pa are distinct, and the eigenvectors aj, and bj satisfy the following normalization

relation

bT
i aj � aT

i bj � dij �18�
with dij being the Kronecker delta, then the general solutions of Eq. (6) in the transformed domain can
be obtained by superposing six eigensolutions of Eq. (8) (Yuan and Yang, 1999), that is

Äu�y1, y2, x3 � � iZÿ1 ÅA < eÿi �p�Zx 3 > Åq� iZÿ1A < eÿip�Zx 3 > q 0

Ät�y1, y2, x3 � � ÅB < eÿi �p�Zx 3 > Åq� B < eÿip�Zx 3 > q 0

Äs�y1, y2, x3� � ÅC < eÿi �p�Zx 3 > Åq� C < eÿip�Zx 3 > q 0 �19�

where Åqand q ' are arbitrary complex vectors to be determined and
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heÿip�Zx 3i � diag
�
eÿip1Zx 3 , eÿip2Zx 3 , eÿip3Zx 3

�
�20�

It is also worth mentioning that the general solutions (19) remain valid if x3 is replaced by �x3 ÿ g� with
g being an arbitrary real constant. In addition, besides their obvious dependence on material properties,
the matrices A, B, C, vectors Åq, q ', and pj are also functions of the unit vector n.

4. Bimaterial Green's functions in the transformed domain

For the anisotropic bimaterials, the continuity condition in Eq. (2) at the interface x3 � 0 and the
condition (4) at x3 � d become, in the transformed domain, as

Äu1jx 3�0� � Äu2jx 3�0ÿ , Ät1jx 3�0� � Ät2jx 3�0ÿ �21�
and

Äu1jx 3�d ÿ � Äu1jx 3�d �

Ät1jx 3�d ÿ ÿ Ät1jx 3�d � � f �22�
Using these conditions as well as the requirement that the solutions should be bounded as x3
approaches in®nity, the bimaterial Green's functions in the transformed domain can be derived as
(Yuan and Yang, 1999)

For x3 > d (in material 1)

Äu1�y1, y2, x3�, � ÿiZÿ1 ÅA1heÿi �p
�1 �
� Z�x 3ÿd�iÅq11 ÿ iZÿ1 ÅA1heÿi �p

�1�
� Zx 3iÅq1

Ät1�y1, y2, x3� � ÿ ÅB1heÿi �p
�1�
� Z�x 3ÿd�iÅq11 ÿ ÅB1heÿi �p

�1�
� Zx 3iÅq1

Äs1�y1, y2, x3 � � ÿ ÅC1heÿi �p
�1�
� Z�x 3ÿd�iÅq11 ÿ ÅC1heÿi �p

�1 �
� Zx 3iÅq1 �23�

For 0Rx3 < d (in material 1)

Äu1�y1, y2, x3� � iZÿ1A1heÿip
�1�
� Z�x 3ÿd�iq11 ÿ iZÿ1 ÅA1heÿi �p

�1 �
� Zx 3iÅq1

Ät1�y1, y2, x3� � B1heÿip�1 �� Z�x 3ÿd�iq11 ÿ ÅB1heÿi �p
�1 �
� Zx 3iÅq1

Äs1�y1, y2, x3 � � C1heÿip
�1 �
� Z�x 3ÿd�iq11 ÿ ÅC1heÿi �p

�1 �
� Zx 3iÅq1 �24�

For x3 < 0 (in material 2)

Äu2�y1, y2, x3� � iZÿ1A2heÿip
�2�
� Zx 3iq2
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Ät2�y1, y2, x3� � B2heÿip
�2 �
� Zx 3iq2

Äs2�y1, y2, x3 � � C2heÿip
�2 �
� Zx 3iq2 �25�

where subscripts 1 and 2 denote the quantities in materials 1 and 2, respectively and

q11 � AT
1 f �26�

The complex vectors Åq1 and q2 in Eqs. (23)±(25) are determined by

Åq1 � G1heip
�1 �
� ZdiAT

1 f �27a�

q2 � G2heip�1 �� ZdiAT
1 f �27b�

G1 � ÿ ÅA
ÿ1
1

ÿ
ÅM1 �M2

�ÿ1�M1 ÿM2�A1

G2 � Aÿ12

ÿ
ÅM1 �M2

�ÿ1ÿ
M1 � ÅM1

�
A1 �28�

where Ma are the impedance tensors de®ned as

Ma � ÿiBaA
ÿ1
a �a � 1, 2� �29�

Eqs. (23)±(25) are the bimaterial Green's displacements and stresses in the Fourier transformed domain.
Several important features pertained to these Green's functions are highlighted below:

1. For the solutions in material 1 �x3 > 0), the ®rst terms in Eqs. (23) and (24) are the transformed-
domain Green's function for the anisotropic full-space. The inverse of this Green's function, i.e., the
physical-domain solutions, has been developed recently by Ting and Lee (1997) and Tonon et al.
(1999) in an explicit form. Therefore, the Fourier inverse transform needs to be carried out only for
the second terms of the solutions, which are similar to the complementary part of the Mindlin's
solution (Mindlin, 1936). This observation is critical in that the singularities involved in the physical-
domain bimaterial Green's function actually appear only in the full-space Green's function. Since the
latter function has an explicit-form representation, such singularities can be evaluated easily. Thus,
the complementary part of the bimaterial Green's function is regular everywhere in its assigned region
with the only exception of x3 � d � 0: This special case will be addressed in Appendix A.

2. When the material properties in materials 1 and 2 are identical, G1 � 0 and G2 � I, the expressions of
the coe�cients in Eqs. (27a) and (27b) are reduced to

Åq1 � 0

q2 � heip
�1 �
� ZdiAT

1 f �30�
Thus, the bimaterial Green's functions are reduced automatically to the solutions in the full-space.

3. When d40�, the solutions in the region 0Rx3 < d disappear, and the remaining Green's functions are
reduced to the interfacial Green's functions with a point force applied at the interface of material 1.

4. Eqs. (23)±(25) can also be reduced to the half-space Green's functions by ignoring Eq. (25) (i.e.,
solutions in material 2) and letting B2 � 0: In this case, G1 in Eq. (28) is simpli®ed to
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G1 � ÅB
ÿ1
1 B1 �31�

5. Bimaterial Green's functions in the physical domain

Having obtained the Green's functions in the transformed domain, we now apply the inverse Fourier
transform to Eqs. (23)±(25). To handle the double in®nite integrals, the polar coordinate transform is
introduced so that the in®nite integral with respect to the radial variable can be carried out exactly.
Thus, the ®nal bimaterial Green's functions in the physical domain can be expressed in terms of a
regular line-integral over [0, 2p]. In the following, we will use only the displacement solution in region
x3 > d of material 1 to illustrate the derivation, and list the ®nal results for other Green's functions.

Applying the Fourier inverse transform, the Green's displacement in Eq. (23) gives

u1�x1, x2, x3� � ÿ i

4p2

� �n
Zÿ1 ÅA1heÿi �p

�1 �
� Z�x 3ÿd�iÅq11 eÿi�x 1y1�x 2y2 �

o
dy1 dy2

ÿ i

4p2

� �n
Zÿ1 ÅA1heÿi �p

�1 �
� Zx 3iÅq1 eÿi�x 1y1�x 2y2 �

o
dy1 dy2 �32�

The ®rst integral in Eq. (32) corresponds to the full-space Green's displacement that is available in an
explicit form (Ting and Lee, 1997; Tonon et al., 1999). Consequently, the inverse transform needs to be
carried out only for the second regular integral, or the complementary part. The singularities involved in
the bimaterial Green's function appear only in the full-space solution that can be evaluated easily
because of its explicit-form expression. Denoting the full-space Green's function by u11 �x1, x2, x3� and
introducing a polar coordinate transform consistent with the one de®ned in Eq. (7), i.e.,

y1 � Zcos y

y2 � Zsin y �33�

Then, Eq. (32), also with use of (27a), become

u1�x1, x2, x3� � u11 �x1, x2, x3 �

ÿ i

4p2

" � 2p

0

dy
�1
0

ÅA1heÿi �p
�1 �
� Zx 3iG1heip

�1�
� ZdieÿiZ�x 1cos y�x 2sin y�AT

1 dZ

#
f �34�

Since the matrices A1 and G1 are independent of the radial variable Z, the integral with respect to Z can
actually be performed analytically. Assuming that x3 6�0 or d 6�0, Eq. (34) can be reduced to a compact
form

u1�x1, x2, x3� � u11 �x1, x2, x3 � � 1

4p2

" � 2p

0

ÅA1G
�1�
u AT

1 dy

#
f �35�
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where�
G�1�u

�
ij
� �G1�ij
ÿ �p
�1�
i x3 � p

�1�
j dÿ �x1cos y� x2sin y�

�36�

Using a similar procedure, other bimaterial Green's functions can be derived and the results are listed
below:

t1�x1, x2, x3� � t11 �x1, x2, x3 � � 1

4p2

" � 2p

0

ÅB1G
�1�
t AT

1 dy

#
f

s1�x1, x2, x3� � s11 �x1, x2, x3� � 1

4p2

" � 2p

0

ÅC1G
�1�
t AT

1 dy

#
f �37�

u2�x1, x2, x3� � ÿ 1

4p2

" � 2p

0

A2G
�2�
u AT

1 dy

#
f

t2�x1, x2, x3� � ÿ 1

4p2

" � 2p

0

B2G�2�t AT
1 dy

#
f

s2�x1, x2, x3� � ÿ 1

4p2

" � 2p

0

C2G�2�t AT
1 dy

#
f �38�

In Eqs. (37) and (38), t11 �x1, x2, x3� and s11 �x1, x2, x3� are the Green's stresses in the full-space and�
G�1�t

�
ij
� �G1�ijh
ÿ �p
�1�
i x3 � p

�1�
j dÿ �x1cos y� x2sin y�

i2 �39�

�
G�2�u

�
ij
� �G2�ij
ÿp�2�i x3 � p

�1�
j dÿ �x1cos y� x2sin y�

�40�

�
G�2�t

�
ij
� �G2�ijh
ÿ p
�2�
i x3 � p

�1�
j dÿ �x1cos y� x2sin y�

i2 �41�

Therefore, the complementary part of the bimaterial Green's displacements and stresses can be expressed
in terms of a regular line integral over [0, 2p]. With regard to these physical-domain bimaterial Green's
functions (Eqs. (35), (37), and (38)), the following important observations can be made:

1. In deriving the results, we have assumed that the point force (source point) is located at (0, 0, d ). For
a force located at �x0

1, x
0
2, d�, the variables x1 and x2 in the above expressions need to be replaced by

x1 ÿ x0
1 and x2 ÿ x0

2, respectively.
2. Similar to the procedures made on the transformed-domain Green's functions, the physical-domain
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Green's functions presented here can be reduced to the half-space, interfacial, and homogeneous
Green's functions by a suitable substitution of the involved vectors and matrices.

3. For the complementary part of the solution in material 1 and the solution in material 2, the
dependence of the solutions on the ®eld point (x1, x2, x3) and source point �x0

1, x
0
2, d� appears only

through matrices G�1�u , G�1�t , G�2�u , and G�2�t as de®ned in Eqs. (36) and (39)±(41). Therefore, the
derivatives of the bimaterial Green's functions with respect to either the ®eld or source point can be
exactly carried out under the integral sign. These derivatives are required in the integral equation
method for the internal stress and fracture analyses in bimaterial solids.

4. The bimaterial Green's functions for displacements and stresses are inversely proportional to,
respectively, a linear and quadratic combination of the ®eld and source coordinates. These features
resemble the behavior of the full-space Green's displacement (A1/r ) and stress (A1/r 2) where r is the
distance between the source and ®eld points.

5. The integrals in Eqs. (35), (37), and (38) for performing the complementary part of the Green's
functions are regular and thus can be easily carried out by a standard numerical integral method such
as the Gauss quadrature.

6. In deriving the physical-domain bimaterial Green's functions, x3 6�0 or d 6�0 has been assumed. For
the special case of x3 � d � 0, i.e., both the ®eld and source points are located on the interface for
the bimaterial case or on the surface for the half-space case, the Green's functions presented above
need to be modi®ed. A detailed discussion is given in Appendix A. As can be observed, the interfacial
Green's displacement has an expression similar to that derived by Barnett and Lothe (1975).
Furthermore, the surface Green's displacement can be reduced to the real-form line-integral
expression derived by Barnett and Lothe (1975) and recently by Wu (1998).

6. Numerical examples

In this section, several numerical examples are carried out to compare the present Green's functions
and the existing analytical solutions for the isotropic or transversely isotropic half-space, and to evaluate
the accuracy and the e�ciency of the current solutions. Next, four cases are examined to demonstrate
the e�ect of material anisotropy on the Green's displacements and stresses for anisotropic half-space
and anisotropic bimaterials. For the isotropic or transversely isotropic half-space, the full-space Green's
function employed is that derived by Pan and Chou (1976). While for anisotropic half-space and
anisotropic bimaterials, the full-space Green's functions involved were evaluated using the explicit
expression of Tonon et al. (1999).

Table 1

Green's functions results in an isotropic half-space

u=�f=Ed � S(0, 0, d ), F(0, 0, 0.75d ) S(0, 0, d ), F(0, 0, 1.25d )

Present Mindlin (1936) Present Mindlin (1936)

(1, 1) = (2, 2) 0.618598 0.618584 0.599496 0.599482

(3, 3) 1.034496 1.034490 0.988784 0.988780

sss=�f=d 2�
(1, 5) = (2, 4) 0.335471 0.335450 ÿ0.379938 ÿ0.379918
(3, 1) = (3, 2) ÿ0.397176 ÿ0.397176 0.352272 0.352272

(3, 3) 2.961820 2.961776 ÿ3.173624 ÿ3.173576
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6.1. Green's functions in a transversely isotropic or isotropic half-space

When the material in a half-space is either isotropic or transversely isotropic with the axis of
symmetry being normal to the surface of the half-space, analytical Green's functions can be derived
(Mindlin, 1936; Pan and Chou, 1979a, 1979b). To verify the current Green's functions, the Young's
modulus E � 1 Msi, and the Poisson's ratio n � 0:3 for the isotropic case are selected. For the
transversely isotropic case, the material properties selected are E = 1 Msi, E ' =10 Msi, n � n 0 � 0:3,
G 0 � 1 Msi. Where E and E ' are the Young's moduli in the plane of isotropy (x1±x2 plane) and the
plane normal to it; n and n 0 are Poisson's ratios characterizing the lateral strain response in the plane of
isotropy to a stress acting parallel and normal to it; and G ' is the shear modulus in the plane normal to
the plane of isotropy. The normalized numerical results of the half-space Green's functions, obtained
with a 20-point Gauss quadrature for some source (S ) and ®eld (F ) locations, are presented in Tables
1±3 and compared with the analytical Green's functions. In these tables, the ®rst and second numbers in
the bracket denote the force direction and the Green's function component, respectively. The second
index in the stress sss (1, 2, 3, 4, 5) corresponds to the stress components (11, 22, 33, 23, 31). It is also
noted that for the transversely isotropic half-space case (Table 3), the analytical Green's function results
are obtained from a well-tested program (Pan, 1997). The present results in Table 2 are obtained using
the surface Green's displacements and stresses derived in Appendix A; other results are from the
reduced half-space expressions of Eqs. (34) and (37). Note also that the material properties need to be

Table 2

Surface Green's functions results in an isotropic half-space at S(0, 0, 0), F(a, ÿa, 0)

u=�f=Ea� Present Mindlin (1936)

(1, 1) = (2, 2) 0.248715 0.248712

(3, 3) 0.204826 0.204822

(1, 2) = (2, 1) ÿ0.0438818 ÿ0.0438904
(1, 3) = ÿ(3, 1) 0.0413854 0.0413803

ÿ(2, 3) = (3, 2) 0.0413854 0.0413803

sss=�f=a 2�
(2, 2) = ÿ(1, 1) 0.0956579 0.0956586

(2, 1) = ÿ(1, 2) 0.0506308 0.0506428

(1, 6) = ÿ(2, 6) 0.0731475 0.0731507

(3, 6) ÿ0.0318355 ÿ0.0318310

Table 3

Green's functions results in a transversely isotropic half-space

u=�f=Ed � S(0, 0, d ), F(0, 0, 0.75d ) S(0, 0, d ), F(0, 0, 1.25d )

Present Pan (1997) Present Pan (1997)

(1, 1) = (2, 2) 0.64233732 0.64233732 0.62325126 0.62325126

(3, 3) 0.39504886 0.39504886 0.37803374 0.37803374

sss=�f=d 2�
(1, 5) = (2, 4) 1.34601664 1.34601664 ÿ1.43706520 ÿ1.43706520
(3, 1) = (3, 2) ÿ0.65825908 ÿ0.65825908 0.63970644 0.63970644

(3, 3) 11.9102536 11.9102536 ÿ12.6181400 ÿ12.6181400

E. Pan, F.G. Yuan / International Journal of Solids and Structures 37 (2000) 5329±5351 5339



slightly perturbed so that the requirement of distinct pa can be met. As can be observed clearly from
these tables, the numerical results from the current Green's functions are in excellent agreement with the
existing analytical half-space Green's functions.

The bimaterial Green's functions for the case of isotropy or transverse isotropy are also tested. The
Green's function results are also in good agreement with those shown in Guzina and Pak (1999) for the
isotropic bimaterial case and in Yue (1995) for the transversely isotropic bimaterial case.

6.2. Green's functions in anisotropic half-spaces and bimaterials

After testing our Green's functions for the isotropic or transversely isotropic case, we now present the
numerical analysis for some Green's function results in anisotropic half-spaces and anisotropic
bimaterials. Two anisotropic (orthotropic) materials with a total of four cases are considered.

One of the orthotropic materials, named NASA fabric, is the composite material made by stacking
layers of a carbon warp-knit fabric that was stitched with Kevlar-29 thread prior to introducing 3501-6

Fig. 2. The normalized Green's displacements in a half-space with NASA fabric. (a) f � �f1, 0, 0�; (b) f � �f3, 0, 0�:
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Fig. 3. The normalized Green's stresses in a half-space with NASA fabric. (a) and (b) f � �f1, 0, 0�; (c) f � �f3, 0, 0�:

E. Pan, F.G. Yuan / International Journal of Solids and Structures 37 (2000) 5329±5351 5341



epoxy resin (Pan and Yuan, 1999). The resin was introduced in an autoclave using a resin ®lm infusing
process. In the NASA Advanced Composites Transport Program, Boeing is using this material to
develop a composite wing box for a transport aircraft. The resulting orthotropic material properties are:

EX � 11:773 Msi, EY � 5:162 Msi, EZ � 1:53 Msi,

GXY � 2:479 Msi, GXZ � 0:64 Msi, GYZ � 0:57 Msi,

nXY � 0:401, nXZ � 0:22, nYZ � 0:29:

The other one is a graphite/epoxy composite with stronger material anisotropy. The material properties
are listed as follows:

EX � 21:321 Msi, EY � 1:320 Msi, EZ � 1:440 Msi,

Fig. 4. The normalized Green's displacements in a half-space with graphite/epoxy. (a) f � �f1, 0, 0�; (b) f � �f3, 0, 0�:
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Fig. 5. The normalized Green's stresses in a half-space with graphite/epoxy. (a) and (b) f � �f1, 0, 0�; (c) f � �f3, 0, 0�:
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GXY � 0:860 Msi, GXZ � 0:619 Msi, GYZ � 0:680 Msi,

nXY � 0:3, nXZ � 0:3, nYZ � 0:49:

For the two composites, the principal material axes �EX and EY� originally coincide with the x1±x2 axes.
In the numerical calculation, the composites are oriented 458 counterclockwise with respect to the x1-
axis. Thus, the sti�ness tensor Cijkl of both materials in the structural coordinates (x1, x2, x3) is
monoclinic with symmetry plane at x3 � 0: The four cases considered here are:

Case I: A half-space with NASA fabric material;
Case II: A half-space with graphite/epoxy;
Case III: Bimaterials with NASA fabric in material 1 and graphite/epoxy in material 2;
Case IV: Bimaterials with graphite/epoxy in material 1 and NASA fabric in material 2.

Fig. 6. The normalized Green's displacements in bimaterials with NASA fabric in material 1 and graphite/epoxy in material 2. (a)

f � �f1, 0, 0�; (b) f � �f3, 0, 0�:
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Fig. 7. The normalized Green's stresses in bimaterials with NASA fabric in material 1 and graphite/epoxy in material 2. (a) and (b)

f � �f1, 0, 0�; (c) f � �f3, 0, 0�:
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The normalized Green's displacements and stresses are presented in Figs. 2±9. In these ®gures, the point
force (or source point) is applied at (0, 0, d ). The displacements and stresses are plotted at ®eld points
(x1/d, x2/d, x3/d ) = (1, 1, z/d ) with z/d varying from 0 to 3 for Cases I and II; from ÿ3 to 3 for Cases
III and IV. In the ®gures where the displacements are shown, the Young's modulus Emax � 11:773 Msi
for Case I and Emax � 21:321 Msi for other cases are used as a normalization parameter. It is also noted
that, because of the special locations of the source and ®eld points being investigated, the Green's
functions due to a point force in the x2-direction can be readily obtained from those due to a point
force in the x1-direction. Therefore, only the results caused by a point force the x1- and x3-directions are
presented.

The normalized Green's displacements and stresses in anisotropic half-spaces (Cases I and II) are
shown in Figs. 2±5. By comparing the normalized Green's displacements in NASA fabric half-space
(Fig. 2(a) and (b)) with those in graphite/epoxy half-space (Fig. 4(a) and (b)), it is observed that the

Fig. 8. The normalized Green's displacements in bimaterials with graphite/epoxy in material 1 and NASA fabric in material 2. (a)

f � �f1, 0, 0�; (b) f � �f3, 0, 0�:
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Fig. 9. The normalized Green's stresses in bimaterials with graphite/epoxy in material 1 and NASA fabric in material 2. (a) and (b)

f � �f1, 0, 0�; (c) f � �f3, 0, 0�:
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variations of the same Green's displacement components with respect to the x3-coordinate are similar to
each other. However, their magnitudes are di�erent with those in graphite/epoxy half-space being larger.
Similar conclusions can also be drawn by examining the variation of the corresponding Green's stresses
(Fig. 3(a)±(c) for Case I and Fig. 5(a)±(c) for Case II). While the stresses caused by the point force in
the x3-direction have the same magnitude for these two cases, the magnitudes of the stresses caused by
the point force in the x1-direction in graphite/epoxy are larger than those in NASA fabric, especially for
the in-plane stress components (Fig. 5(a) vs. Fig. 3(a)).

The normalized Green's displacements and stresses in anisotropic bimaterials are shown in Fig. 6.
Again, the variations of the same Green's function components with respect to the x3-coordinate are
similar to each other. Similar trend to the half-space case, the magnitude of the in-plane stresses caused
by the point force in the x1-direction for Case IV (graphite/epoxy in material 1 and NASA fabric in
material 2) is greater than those for Case III (NASA fabric in material 1 and graphite/epoxy in material
2) (Fig. 9(a) vs. 7(a)). Furthermore, the in-plane stresses experience a jump across the interface because
of the discontinuity of the material property.

7. Conclusions

In this paper, three-dimensional Green's functions of point forces in anisotropic bimaterials are
derived in terms of a regular line integral. Although the transformed-domain Green's functions are
derived in exact closed-forms using the Stroh formalism, the explicit expressions for Green's functions in
the physical domain are di�cult to obtain due to the general anisotropy of the material and a geometry
plane involved (e.g., surface plane for half-space case or interface plane for bimaterial case). The results
from direct numerical calculation of the inverse Fourier transform may be inaccurate because of the
in®nite integral and singular kernels involved. The Fourier inverse transform using polar coordinate
system is proposed to reduce the double in®nite integrals to a ®nite line integral over [0, 2p]. Mindlin's
superposition method (Mindlin, 1936) is also employed to handle the singularities in the bimaterial
Green's functions so that the involved singularities appear only in the full-space Green's function that
can be evaluated accurately using the explicit form expression (without numerical integral!). Therefore,
the ®nal physical bimaterial Green's functions are expressed as a sum of the explicit full-space Green's
function and a complementary part. The complementary part of the bimaterial Green's functions is
represented in terms of a regular line-integral that can be easily carried out by the regular numerical
Gauss quadrature. In addition, derivatives of the complementary part of the Green's functions with
respect to either the source or ®eld point can be carried out exactly under the line integral. Some
important features related to the bimaterial Green's functions, and their reduction to special cases have
been discussed.

Numerical examples are given for both half-space and bimaterial cases with isotropic, transversely
isotropic, and anisotropic material properties. For the half-space case with isotropic or transversely
isotropic material properties, the current Green's function solutions are in excellent agreement with the
existing analytical solutions. For the anisotropic case, the Green's functions in a half-space or in
bimaterials show clearly the e�ect of material anisotropy on the displacement and stress distributions.
The proposed method for calculating the Green's functions is very general and has proven to be
e�ective and very accurate. The method can be used to derive Green's functions with higher derivatives
if desired. The method will have wide applications to the boundary integral equation based method, and
to the investigation of deformation, stress, and fracture analysis related to either anisotropic half-space
or anisotropic bimaterials.
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Appendix A. Green's functions on the interface of bimaterials or the surface of a half-space

As discussed in the text, for the special case of x3 � d � 0, i.e., both the ®eld and source points are
located on the interface for the bimaterial case or on the surface for the half-space case, the Green's
functions need to be derived separately. It is emphasized here again that only for this special case, the
singularities of the bimaterial or half-space Green's function occur in the complementary part of the
solution. Fortunately however, these singularities are associated with one-dimensional ®nite-part
integrals only, and therefore, can be calculated accurately in a similar way as the numerical Gauss
quadrature. In the following, we choose the Green's displacement in material 1 for illustration. For this
case, Eq. (34) is reduced to

u1�x1, x2, 0� � u11 �x1, x2, 0� ÿ i

4p2

" � 2p

0

dy
�1
0

ÅA1G1 eÿiZ�x 1cos y�x 2sin y�AT
1 dZ

#
f �A1�

Introducing the polar coordinate transform for the ®eld point

x1 � rcos y0

x2 � rsin y0 �A2�
and carrying out the integral with respect to Z using relation (Barnett and Lothe, 1975)�1

0

eÿikx dx � ÿ i

k
� pd�k� �A3�

Eq. (A1) can be rewritten as

u1�x1, x2, 0� � u11 �x1, x2, 0� ÿ i

4p2

(� 2p

0

ÅA1G1AT
1

� ÿi
rcos�yÿ y0� � pd�rcos�yÿ y0 ��

�
dy

)
f �A4�

By virtue of (Barnett and Lothe, 1975)

d�rcos�yÿ y0�� � d�yÿ y02p=2�
rjsin�yÿ y0�j �A5�

the interfacial Green's displacement in material 1 can be ®nally expressed as

u1�x1, x2, 0� � u11 �x1, x2, 0� ÿ 1

4pr

(
1

p

� 2p

0

ÅA1G1AT
1

cos�yÿ y0 � dy� i
�

ÅA1G1A
T
1

�
y�y02p=2

)
f �A6�
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with the integral being understood as the Cauchy principal value. If G1 is replaced by expression (31),
this equation will then become the surface Green's displacement in an anisotropic half space. The
Green's function expression can be further reduced to the surface Green's function obtained by Barnett
and Lothe (1975) or recently by Wu (1998), i.e.,

u�x1, x2, 0� � 1

2pr

"
Lÿ1�y0 � ÿ 1

p

�p
0

S
�
f
�
Lÿ1

�
f
�

sin�fÿ y0� df

#
f �A7�

with f � y� p=2 (Barnett and Lothe, 1975; Ting, 1996). It is further noted that the interfacial Green's
displacement can also be expressed in a real-form line-integral upon replacement of the involved
complex matrices with real ones (Ting, 1996).

Similarly, the interfacial Green's traction vector in material 1 can be derived as

t1�x1, x2, 0� � t11 �x1, x2, 0� � 1

4pr2

(
1

p

� 2p

0

ÅB1G1AT
1

cos2�yÿ y0 � dy3i
d
�

ÅB1G1AT
1

�
dy

jy�y02p=2

)
f �A8�

where the integral needs to be calculated in the ®nite-part sense (Paget, 1981).
Finally, the in-plane Green's stress vectors along the interface in materials 1 and 2 are obtained,

respectively, as

s1�x1, x2, 0� � s11 �x1, x2, 0� � 1

4pr2

(
1

p

� 2p
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�
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